Earth-to-air Heat Exchanger
Design Evaluation

March 31, 2008

Report prepared by:

Didier Thevenard, Ph.D., P.Eng.
Numerical Logics Inc.
dthevenard@numlog.ca

Numerical Logics Inc.
498 Edenvale Cres.
Waterloo, ON Canada N2T 1Y5
phone: +1 519-880-0419
web: www.numlog.ca
Disclaimer

The material in this report reflects Numerical Logics’ best judgment in light of the information available to it at the time of preparation. Numerical Logics Inc. does not make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report. In no event shall Numerical Logics Inc. be liable for any loss or damage whatsoever (including without limitation, direct or indirect damages for personal injury, loss of business information, loss of business profit, or any other pecuniary loss) arising out of the use of the information contained in this report.
1 Introduction

Earth-to-air heat exchanger (EAHX) systems are long metallic, plastic or concrete pipes that are laid underground and are connected to the air intake of buildings, particularly houses. Their purpose is to provide some pre-conditioning of the air – either pre-heating in the winter or pre-cooling in the summer. A previous study by Numerical Logics Inc. for the Yukon Energy Solutions Centre (ESC) analyzed, through a literature search, the current state of the art of such systems, their construction, performance, and potential associated problems. From the literature search it was found that the economics of earth tubes was marginal, particularly for heating. In addition, there were concerns with possible problems with insects, rodents and dust accumulation in earth tubes. The purpose of this study is to evaluate an earth tube design that would respond to these concerns and evaluate the economics. This report summarizes the proposed design, sizing and basic construction of an EAHX system that is designed to be as economical as possible with the current state of technology, and at current prices.

2 Site

A site with no trees was selected so that there would be no tree roots that would interfere with the installation or operation of the earth tubes. The lot layout is shown in Figure 1. The available space in the backyard is roughly 8.0 m deep by 15.0 m wide; a fresh air inlet is located near the corner of the house and is slightly off-center (9 m to one side of the yard, 6 m to the other). The design developed here is specific to that site but is intended to be typical and applicable to any similar house.
3 Construction options

Two options were considered: a ready-made system available commercially and a custom-made system.

3.1 Ready-made system

EAHX systems are available commercially. At least on manufacturer uses plastic pipes, lined with an anti-microbial, silver-based coating that inhibits bacterial growth, and made with secure joints that prevent gas infiltration. The system has been in use in Europe and has been demonstrated in a few projects in North America.

A number of systems were proposed by one company contacted: a 1-pipe configuration, 40 m long, at a cost of over $2,000 for the pipes alone; a 2-pipe configuration, each pipe being 40 m long, at a cost of over $3,000 for the pipes alone; and a 2-pipe configuration,
each pipe being 75 m long, at a cost of over $5,500 for the pipes alone. The system proposed by the company included one single 8” steel air intake, approximately 1.5 m high, which feeds 8” underground polypropylene pipes laid out in a grid pattern. The system also includes an 8” condensation collection shaft.

The two main apparent concerns noted with the commercial system were:

- the antibacterial coating, once covered with dust, may become ineffective since the system lacks a method to clean the tubes with a pig or other means, and
- the cost of the system appears to be too high for applications in the Yukon to have a good payback.

In this report, the design and economics of a custom-made system which addresses these concerns is evaluated.

3.2 Custom-made system

![Figure 2 – Some EAHX configurations under consideration.](image)
The custom-made system was designed so that it is easy to clean. The pipes are fanned out in a radial pattern from a central pipe large enough to enable easy cleaning of all pipes with a pig. It would also be possible to flush each pipe with water from a garden hose as well. Drainage of condensation is provided from the bottom of the central pipe. From this central point, the air that is collected is drawn through a single pipe into the air intake (or heat recovery ventilator) of the residence. Several configurations were considered including 2 to 9 equally spaced pipes; some examples are shown in Figure 2. In that figure, the dashed lines outline a rectangle with a buffer of 1 m from adjacent buildings, a fence and a sloped area.

The pipe selected was 100 mm (4”) light weight (DR35) smooth (not corrugated) plastic pipe. This pipe has a smooth interior surface resulting in the low pressure drop needed for this application. It also has the structural strength needed to be buried at the depths required, and is readily available. Finally, it is significantly lower in cost than pipe with a silver-oxide coated interior.

4 Sizing

The University of Siegen in Germany has developed a program called GAEA\(^1\) which can be used for the sizing of EAHX. The program was used to complete this preliminary analysis of the efficiency of the proposed EAHX system.

4.1 Simulation parameters

4.1.1 EAHX characteristics

Number of pipes was varied from 2 to 9, as noted above.

The pipe length varied, typically between 6 m (for the pipe facing away from the house) to 8.85 m (the maximum length to the corner of the green rectangle). For the simulation an equivalent radius was used as the pipe length; this was defined as the radius of the semi-circle that would have the same area as the green rectangle shown in Figure 2. The calculated equivalent radius was 7.05 m.

Pipe diameter is set to 100 mm.

Distance between pipes is taken as their average distance, which is approximated by

\[
L \sin(\beta / 2)
\]

where \(L \) is the length of the pipe and \(\beta \) is the angle separating the pipes. Equivalent distance between pipes is shown in Table 1.

\(^1\) The program is available at http://nesa1.uni-siegen.de/index.htm?/softlab/gaea_e.htm.
Table 1 – Equivalent distance between pipes, depending on configuration.

<table>
<thead>
<tr>
<th>Number of pipes in layout</th>
<th>Angle separating adjacent pipes (°)</th>
<th>Equivalent distance between pipes (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>90</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>2.7</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>2.7</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>1.8</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>1.8</td>
</tr>
<tr>
<td>9</td>
<td>22.5</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Depth of pipe was set to 2 m.

Distance from the building was set to 4 m, which is the average distance between the pipes and the house.

4.1.2 Soil

Soil type was set to ‘Sandy ground’ (density: 1,520 kg/m³; heat capacity: 1.65 kJ/kg/°C; thermal conductivity 1.24 W/m/°C; ground water level at -20 m).

4.1.3 Climate

The program requires only a file with hourly temperatures. Temperatures from the Canadian Weather for Energy Calculations² (CWEC) climate file for Whitehorse, which represents a ‘typical’ year, were used.

4.1.4 HVAC

The quasi-stationary model is used with a building volume of 510 m³, 0.4 ACH, and a ventilation flow of 204 m³/h (120 cfm). The EAHX is active in heating mode whenever the outdoor temperature is lower than 18°C, and in cooling mode whenever the outdoor temperature exceeds 25°C. The constant pressure drop in the system is estimated at 25 Pa (1 inch water).

² CWEC files are available from Environment Canada.
4.2 Simulation results

Several parameters were analyzed: the number of hours when the system would provide heating or cooling, the maximum and average temperature rise or fall, and the average amount of heating or cooling delivered when the system is in operation.

Total heating and cooling energy delivered as a function of the number of tubes is shown in Table 2 and in graphical form in Figure 3.

Table 2 – Yearly energy delivered as a function of the number of pipes.

<table>
<thead>
<tr>
<th>Number of pipes</th>
<th>Yearly heating energy delivered (kWh)</th>
<th>Yearly cooling energy delivered (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>954</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1232</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>1453</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>1633</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>1723</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>1735</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>1832</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>1731</td>
<td>19</td>
</tr>
</tbody>
</table>

Figure 3 – Yearly energy delivered as a function of the number of pipes.
Detailed simulation summaries are provided in Appendix A.

4.3 Discussion

It appears that the system will be used mostly in heating mode. Cooling mode will be required only marginally in the months of June and July.

Maximum heat gain is obtained with an 8-pipe system, but with a footprint that is slightly larger than for other systems (see Figure 2). Above 6 pipes, additional pipes provide only marginal improvement of system efficiency. Increasing the number of pipes from 8 to 9 actually reduces the energy delivered because the spacing between the pipes becomes insufficient.

All results should be interpreted with caution because some parameters are not known with great certainty (e.g. soil condition) and because the geometry of the system (fan pattern) is not the one simulated by the software (comb or grid pattern).

Based on the results shown in Table 2 and the monthly data provided in Appendix A, it is suggested to go either with a 7 or 8-tube system to maximize performance, or with a 5-tube system which provides only marginally less energy (-10.9% compared to the 8-tube system) but with a simpler design. A full economic analysis (extra energy gained vs. additional cost of digging more trenches) could be done to decide between the various options. In this first design, a 5-tube system is proposed.

Note: height of air intake

The **extreme snow depth** in Whitehorse according to the 1971-2000 Canadian Normals is shown in Table 3. Given this table, it is suggested that the air intake be at least 105 cm (3.5') above ground.

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>94</td>
<td>94</td>
<td>66</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>20</td>
<td>21</td>
<td>52</td>
<td>69</td>
</tr>
</tbody>
</table>

5 Performance verification

The issue of the performance of the Earth-to-Air HX Project may need to be addressed. The most cost-effective method to verify the energy performance of the field is to utilize a standalone +/- 0.2% data logging system that will store the values of the outside air and supply air temperatures from the field. Two cable-style air temperature sensors can be installed, one in the inlet of the field so as to shield it from solar effects and the other in the inlet to the house. Another possibility is to install the OA sensor in a shaded/shelter area just outside the house. This will establish the temperature rise (benefit) of the system. In order to most cost effectively convert this to energy, it is recommended that
the flow from the HRV be measured / calibrated and treated as a constant. This will introduce some error into the calculation but will not effect the overall totalization. If the existing HRV is a two-speed fan system a state logger using a dry contact and a DC cable connection can be used to monitor the simultaneous fan speed operation coinciding with the temperature increase in the field. The amount of data storage depends on the interval of storage. For purposes of a realistic sampling it is recommended that a 5-15 minute sample time be used depending on the frequency of data collection and the particular data logger used. Once collected, that data can be easily converted to energy values in a spreadsheet calculation.

6 Economic analysis

To evaluate the economic benefits of the system, its simple payback is calculated. Two hypotheses are documented: one where the full cost of trenching is borne by the project, and one where the cost of trenching is not charged to the project. The first hypothesis is appropriate for retrofit situations, whereas the second may be suitable for a new construction.

6.1 Costs

6.1.1 Costs including trenching

The following construction costs were used:

\textit{Labour}

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Hours</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trenching and backfilling 36 m of 4” pipe at a depth of 2 m</td>
<td>36</td>
<td>50.00</td>
<td>1,800.00</td>
</tr>
<tr>
<td>2</td>
<td>Trenching and backfilling 3 m of 6” pipe</td>
<td>3</td>
<td>50.00</td>
<td>150.00</td>
</tr>
<tr>
<td>3</td>
<td>Labour to install pipes</td>
<td>8</td>
<td>50.00</td>
<td>400.00</td>
</tr>
<tr>
<td></td>
<td>\textit{Total labour}</td>
<td></td>
<td></td>
<td>\textbf{2,350.00}</td>
</tr>
</tbody>
</table>

\textit{Materials}

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Number</th>
<th>Unit price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4’ sump pit</td>
<td>1</td>
<td>142.90</td>
<td>142.90</td>
</tr>
<tr>
<td>2</td>
<td>1’ sump pit extension</td>
<td>6</td>
<td>57.25</td>
<td>343.50</td>
</tr>
<tr>
<td>3</td>
<td>4” PVC piping</td>
<td>144’</td>
<td>2.45</td>
<td>352.80</td>
</tr>
<tr>
<td>4</td>
<td>4” PVC 90-degree elbow</td>
<td>5</td>
<td>5.50</td>
<td>27.50</td>
</tr>
<tr>
<td>5</td>
<td>6” PVC piping</td>
<td>20’</td>
<td>6.59</td>
<td>131.80</td>
</tr>
<tr>
<td>6</td>
<td>6” PVC 90-degree elbow</td>
<td>2</td>
<td>17.18</td>
<td>34.36</td>
</tr>
</tbody>
</table>
7 8” PVC piping 9’ 12.40 111.60
8 8” PVC 8-8-8 T-connection 1 85.57 85.57
9 8” to 6” PVC pipe reducer 1 155.43 155.43
10 4” pipe vent 5 * 50.00
11 8”×4” PVC saddle 5 43.58 217.90
12 8” PVC cap 2 36.96 73.92
13 Neoprene foam * 50.00
14 Clip-on U-nut, 1/4-20 4 * 20.00
15 2” PVC piping 6’ * 15.00
16 4” air intake cap 5 * 50.00
17 6” exhaust port 1 20.00
18 6” flex ducting 20.00
19 8” flex ducting 30.00
20 8” isolation damper 2 100.00
 Freight 175.00
 Total materials 2,207.28

Note: * are estimated values

Contingency costs: 10% of total labour and materials

| Contingency | 455.73 |

Total

The grand total is the sum of labour, materials and contingency.

| GRAND TOTAL ($) | 5,013.01 |

6.1.2 Costs excluding trenching

If trenching costs can be omitted, labour costs are reduced to $ 400, materials are unchanged at $ 2,207.28, and contingency costs become $ 260.73 for a grand total of $ 2,868.01.

6.2 Avoided costs

Only the heating costs are estimated – cooling costs are assumed to be negligible. Cooling during hot spells will be an added benefit of the system but is not factored into the economic analysis.

Heating cost

Heating fuel costs were as follows, based on prices in Whitehorse, Yukon in March, 2008 as reported at the website www.emr.gov.yk.ca/energy/fuel.html:
• 1.227 $/L for Furnace Oil,
• 1.258 $/L for Arctic Stove Oil,
• 0.935 $/L for Propane.

Calorific value C of the fuels listed above is estimated as follows:
• 38.3 MJ/L for Furnace Oil,
• 37.7 MJ/L for Arctic Stove Oil,
• 25.3 MJ/L for Propane.

Given that the 5-pipe system is expected to deliver 1633 kWh of energy during a typical year, the avoided cost of energy because of the use of the EAHX is:

$$\frac{1633 \cdot 3.6}{C \cdot \eta} \cdot r$$

where η is the efficiency of the furnace, assumed to be 65%, and 3.6 MJ/kWh is a conversion factor. This translates into the following costs:
• 289.75 $/year for Furnace Oil,
• 301.80 $/year for Arctic Stove Oil,
• 334.25 $/year for Propane.

6.3 Simple payback

The simple payback is calculated as the ratio of system cost over the avoided cost. The table below provides the expected payback for the two options (trenching / no trenching) and the three fuels considered.

<table>
<thead>
<tr>
<th></th>
<th>With trenching</th>
<th>Without trenching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnace oil</td>
<td>17.3</td>
<td>9.9</td>
</tr>
<tr>
<td>Arctic stove oil</td>
<td>16.6</td>
<td>9.5</td>
</tr>
<tr>
<td>Propane</td>
<td>15.0</td>
<td>8.6</td>
</tr>
</tbody>
</table>
Appendix A – Detailed simulation results

2-pipe system

<table>
<thead>
<tr>
<th>Month</th>
<th>Heating</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours heating</td>
<td>Max temp. rise (°C)</td>
</tr>
<tr>
<td>1</td>
<td>744</td>
<td>10.2</td>
</tr>
<tr>
<td>2</td>
<td>672</td>
<td>8.1</td>
</tr>
<tr>
<td>3</td>
<td>744</td>
<td>6.4</td>
</tr>
<tr>
<td>4</td>
<td>637</td>
<td>4.9</td>
</tr>
<tr>
<td>5</td>
<td>138</td>
<td>17.7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>25.7</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>18.7</td>
</tr>
<tr>
<td>11</td>
<td>624</td>
<td>9.7</td>
</tr>
<tr>
<td>12</td>
<td>716</td>
<td>8.9</td>
</tr>
<tr>
<td>Year (kWh)</td>
<td>954</td>
<td></td>
</tr>
</tbody>
</table>

3-pipe system

<table>
<thead>
<tr>
<th>Month</th>
<th>Heating</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours heating</td>
<td>Max temp. rise (°C)</td>
</tr>
<tr>
<td>1</td>
<td>744</td>
<td>13.4</td>
</tr>
<tr>
<td>2</td>
<td>672</td>
<td>10.6</td>
</tr>
<tr>
<td>3</td>
<td>744</td>
<td>8.3</td>
</tr>
<tr>
<td>4</td>
<td>636</td>
<td>5.9</td>
</tr>
<tr>
<td>5</td>
<td>133</td>
<td>17.7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>25.7</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>18.7</td>
</tr>
<tr>
<td>11</td>
<td>622</td>
<td>9.7</td>
</tr>
<tr>
<td>12</td>
<td>711</td>
<td>11.7</td>
</tr>
<tr>
<td>Year (kWh)</td>
<td>1232</td>
<td></td>
</tr>
</tbody>
</table>
4-pipe system

<table>
<thead>
<tr>
<th>Month</th>
<th>Heating</th>
<th></th>
<th></th>
<th></th>
<th>Cooling</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours heating</td>
<td>Max temp. rise (°C)</td>
<td>Avg temp. rise (°C)</td>
<td>Avg heating power deliv’d (W)</td>
<td>Hours cooling</td>
<td>Max temp. Fall (°C)</td>
<td>Avg temp. Fall (°C)</td>
<td>Avg cooling power deliv’d (W)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>744</td>
<td>16.0</td>
<td>7.7</td>
<td>572</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>672</td>
<td>12.6</td>
<td>5.6</td>
<td>419</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>744</td>
<td>9.9</td>
<td>4.2</td>
<td>311</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>635</td>
<td>6.9</td>
<td>2.0</td>
<td>145</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>132</td>
<td>17.7</td>
<td>1.1</td>
<td>79</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>25.7</td>
<td>0.2</td>
<td>11</td>
<td>24</td>
<td>25.7</td>
<td>10.1</td>
<td>748</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>18.7</td>
<td>1.9</td>
<td>141</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>622</td>
<td>9.7</td>
<td>2.7</td>
<td>202</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>711</td>
<td>14.0</td>
<td>5.4</td>
<td>399</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Year (kWh)</td>
<td>1453</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-pipe system

<table>
<thead>
<tr>
<th>Month</th>
<th>Heating</th>
<th></th>
<th></th>
<th></th>
<th>Cooling</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours heating</td>
<td>Max temp. rise (°C)</td>
<td>Avg temp. rise (°C)</td>
<td>Avg heating power deliv’d (W)</td>
<td>Hours cooling</td>
<td>Max temp. Fall (°C)</td>
<td>Avg temp. Fall (°C)</td>
<td>Avg cooling power deliv’d (W)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>744</td>
<td>18.1</td>
<td>8.7</td>
<td>644</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>672</td>
<td>14.3</td>
<td>6.3</td>
<td>470</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>744</td>
<td>11.1</td>
<td>4.7</td>
<td>349</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>635</td>
<td>7.8</td>
<td>2.2</td>
<td>162</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>131</td>
<td>17.7</td>
<td>1.2</td>
<td>88</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>26.2</td>
<td>0.2</td>
<td>12</td>
<td>21</td>
<td>26.2</td>
<td>11.4</td>
<td>845</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>18.7</td>
<td>2.1</td>
<td>158</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>622</td>
<td>9.8</td>
<td>3.1</td>
<td>226</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>711</td>
<td>15.8</td>
<td>6.1</td>
<td>449</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Year (kWh)</td>
<td>1633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 12 -
6-pipe system

<table>
<thead>
<tr>
<th>Month</th>
<th>Heating</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours heating</td>
<td>Max temp. rise (°C)</td>
</tr>
<tr>
<td>1</td>
<td>744</td>
<td>19.2</td>
</tr>
<tr>
<td>2</td>
<td>672</td>
<td>15.1</td>
</tr>
<tr>
<td>3</td>
<td>744</td>
<td>11.7</td>
</tr>
<tr>
<td>4</td>
<td>635</td>
<td>8.2</td>
</tr>
<tr>
<td>5</td>
<td>131</td>
<td>17.7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>26.2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>18.7</td>
</tr>
<tr>
<td>11</td>
<td>622</td>
<td>10.4</td>
</tr>
<tr>
<td>12</td>
<td>711</td>
<td>16.7</td>
</tr>
<tr>
<td>Year (kWh)</td>
<td>1723</td>
<td></td>
</tr>
</tbody>
</table>

7-pipe system

<table>
<thead>
<tr>
<th>Month</th>
<th>Heating</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours heating</td>
<td>Max temp. rise (°C)</td>
</tr>
<tr>
<td>1</td>
<td>744</td>
<td>19.4</td>
</tr>
<tr>
<td>2</td>
<td>672</td>
<td>15.2</td>
</tr>
<tr>
<td>3</td>
<td>744</td>
<td>11.8</td>
</tr>
<tr>
<td>4</td>
<td>635</td>
<td>8.3</td>
</tr>
<tr>
<td>5</td>
<td>131</td>
<td>17.7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>26.2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>18.7</td>
</tr>
<tr>
<td>11</td>
<td>622</td>
<td>10.5</td>
</tr>
<tr>
<td>12</td>
<td>711</td>
<td>16.9</td>
</tr>
<tr>
<td>Year (kWh)</td>
<td>1735</td>
<td></td>
</tr>
</tbody>
</table>
8-pipe system

<table>
<thead>
<tr>
<th>Month</th>
<th>Heating</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours heating</td>
<td>Max temp. rise (°C)</td>
</tr>
<tr>
<td>1</td>
<td>744</td>
<td>20.5</td>
</tr>
<tr>
<td>2</td>
<td>672</td>
<td>16.1</td>
</tr>
<tr>
<td>3</td>
<td>744</td>
<td>12.5</td>
</tr>
<tr>
<td>4</td>
<td>635</td>
<td>8.7</td>
</tr>
<tr>
<td>5</td>
<td>131</td>
<td>17.7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>26.6</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>18.7</td>
</tr>
<tr>
<td>11</td>
<td>622</td>
<td>11.1</td>
</tr>
<tr>
<td>12</td>
<td>711</td>
<td>17.9</td>
</tr>
<tr>
<td>Year (kWh)</td>
<td>1832</td>
<td></td>
</tr>
</tbody>
</table>

9-pipe system

<table>
<thead>
<tr>
<th>Month</th>
<th>Heating</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours heating</td>
<td>Max temp. rise (°C)</td>
</tr>
<tr>
<td>1</td>
<td>744</td>
<td>19.4</td>
</tr>
<tr>
<td>2</td>
<td>672</td>
<td>15.2</td>
</tr>
<tr>
<td>3</td>
<td>744</td>
<td>11.8</td>
</tr>
<tr>
<td>4</td>
<td>635</td>
<td>8.3</td>
</tr>
<tr>
<td>5</td>
<td>131</td>
<td>17.7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>26.2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>18.7</td>
</tr>
<tr>
<td>11</td>
<td>622</td>
<td>10.5</td>
</tr>
<tr>
<td>12</td>
<td>711</td>
<td>16.9</td>
</tr>
<tr>
<td>Year (kWh)</td>
<td>1731</td>
<td></td>
</tr>
</tbody>
</table>

- 14 -
BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ITEM NO</th>
<th>DESCRIPTION</th>
<th>MANUFACTURER (OR EQUIV)</th>
<th>PN (OR EQUIV)</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>4" SUMP PFP</td>
<td>SABER</td>
<td>SSF401</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>1" SUMP PFT EXTENSION</td>
<td>SABER</td>
<td>SSF4401T</td>
<td>6</td>
</tr>
<tr>
<td>03</td>
<td>4" PVC PIPING SCHEDULE 10</td>
<td>PEX</td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>04</td>
<td>4" PVC 90 DEGREE ELBOW</td>
<td>PEX</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>05</td>
<td>6" PVC PIPING SCHEDULE 10</td>
<td>PEX</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>06</td>
<td>6" PVC 90 DEGREE ELBOW</td>
<td>PEX</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>07</td>
<td>6" PVC PIPE SCHEDULE 10</td>
<td>PEX</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>08</td>
<td>6" S & T CONNECTION</td>
<td>PEX</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>09</td>
<td>6" x 6" PVC PIPE REDUCER</td>
<td>PEX</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>4" PIPE VENT</td>
<td>ACTIVE VENTILATION</td>
<td>PV4-4</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>6" x 4" PVC SADDLE SCHEDULE 10</td>
<td>PEX</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>6" PVC CAP SCHEDULE 10</td>
<td>PEX</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>NEOPRENE FOAM, 1/4" THK X 2"</td>
<td>AIR</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>CLIP ON LAYOUT, 1/4"20</td>
<td>WOAMASTER/CAIRR</td>
<td>SB600MX0</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>2" PVC PIPING SCHEDULE 10</td>
<td>PEX</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>4" AIR INTAKE CAP</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>6" EXHAUST PORT</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>6" FLEX DUCTING</td>
<td>AIR</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>6" FLEX DUCTING</td>
<td>AIR</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>6" ISOLATION DAMPER</td>
<td>AIR</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

SEQUENCE OF OPERATION

01. THE HRV SHALL OPERATE CONTINUOUSLY
02. THE OUTDOOR AIR INTAKE CAN BYPASS THE FIELD BY MANUALLY CONNECTING THE HRV VIA INLET TO AN OIA VENT (OPTIONAL)
03. THE 2% GRADE OF THE FIELD DRAINS TO ACCESS PIPE (READER'S BUMP PFP). IT WILL THEN BE PUMPED FROM THE BUMP, ALL DRAIN VALVES ARE LOCATED IN THE ACCESS TUBE SLAB.

NOTES: CUSTOMER RESPONSIBLE FOR PERFORMANCE ISSUES INCLUDING LIFE CYCLE FOR DESIGN CHANGES

STAMPED COPY ON HAND IN L.B. STOREY LIBRARY

139 QUEIN STREET, SUITE 203
CHARLOTTETOWN PEI C1A 4B3
PIPE CAP
ADD ADDITIONAL INSULATION AND MECHANICALLY FASTENED EXTERIOR GRATE
LONG RADIUS 90° ELBOW
STANDARD SCREEN MATERIAL INSTALLED ON TOP OF TUBE, THEN CAP PLACED UPON SCREEN
OPTIONAL INTAKE
2x90° ELBOW BONDED WITH SCREENING AND MECHANICALLY FASTENED EXTERIOR GRATE
ACCESS HATCH CAPPING
6" PLASTIC CAP
INSTALL STAINLESS STEEL 2" NEOPRENE CLOSED CELL FOAM GASKET RADIALLY ON INSIDE TO PROVIDE SEAL
ACCESS HATCH RECOMMENDED
ACCESS TUBE
2" CONNECTION TO ACCESS TUBE
SLUMP DRAIN
DETAL "BB"
1.5m
6" Ø
2.0m
2% GRADE
2.15m
7m
90° TO HHV
6" Ø
INSULATE PIPING WITH MINIMUM INSULATION, PROVIDE WEATHER COVER
PIDDING METHOD
CLEANING PLUG
EYE HOOK
1.5" CLIP ON LA-HA INSTALL CAGE NUT 4 LOCATIONS EQUALLY SPACED RADIALY AROUND TOP OF ACCESS PIPE
DETAIL "C" - HEADER ARRANGEMENT
TYPICAL CONNECTION
STAGGERED CONNECTION ELEVATION TO ACCOMMODATE FAN ARRANGEMENT
BASE LAYOUT
8" PIPE CAP BONDED TO PIPE
6" MIN FROM LOWER MOST SADDLE CONNECTION
8" ACCESS SHAFT
4" SADDLE MECHANICALLY FASTENED AND COMPLETELY BONDED IN PLACE
ACCESS HATCH DRAIN DETAIL
4" Ø METAL GRATE
FILL BOTTOM 4" WITH GRAVEL AND PLACE 6" METAL GRATE OVER TOP
MECHANICALLY FASTEN AND BOND 2" Ø FITTING FLUSH WITH BOTTOM OF TUNE
FITTING TO HAVE STAINLESS STEEL GRATING
UNDERGROUND PIPING DETAILS
NOTE: DRAWINGS NOT TO SCALE
- NOTE CUSTOMER RESPONSIBLE FOR PERFORMANCE ISSUES INCLUDING LIFE CYCLE FOR DESIGN CHANGES
CLIENT: NUMERICAL LOGICS INC
PROJECT: EARTH TO AIR HEAT EXCHANGER
DRAWING: EARTH TO AIR HEAT EXCHANGER
DATE: 08-APR-2005
DRAWN BY: A. SAVOY
DRAWING NO: 08006-M101
SHEET SIZE: 11" X 17"
SCALE: 1/8" = 1'-0"
Sheet: 2 of 3